Cet ouvrage, issu de cours donnés à l'université de Moscou, est consacré aux fondements de l'algèbre linéaire. Il commence par un exposé des propriétés proprement algébriques des espaces vectoriels (calcul matriciel, dualité, sommes et quotients, structure des endomorphismes) et se poursuit par une étude détaillée des espaces vectoriels pourvus d'une géométrie par le truchement d'un "produit scolaire", c'est-à-dire d'une forme bilinéaire ou sesquilinéaire (espaces euclidiens ou hermitiens, espaces symplectiques). L'ouvrage propose ensuite une introduction à la géométrie affine et à la géométrie projective, agrémentée de quelques échappées (programmation linéaire, polynôme de Hilbert d'une variété algébrique). Il se termine par une présentation à la fois théorique et pratique de l'algèbre tensorielle. L'exposé est sobre au sens où il évite les lourdeurs de notation, les excès de formalisme ou les raffinements accessoires. Il s'attache non seulement à présenter les notions et à démontrer les résultats en toute rigueur, mais aussi à les expliquer et à leur donner chair. De ce souci d'explication relève la discussion systématique d'exemples liés à la physique (symétries de l'espace euclidien tridimensionnel, symétries de l'espace-temps en relativité restreinte, principes fondamentaux de la mécanique quantique), traités à la fois en tant qu'applications et en tant qu'éléments de compréhension de la théorie. Sous ce rapport, comme récrivent les auteurs, la notion de "produit scalaire", centrale dans une partie de l'ouvrage, "peut servir à mesurer les angles dans des espaces euclidiens abstraits. Mais le mathématicien qui ignore que cette même notion permet de mesurer des probabilités (dans des modèles de la mécanique quantique), des vitesses (dans l'espace de Minkowski de la théorie de la relativité restreinte) et les coefficients de corrélation de variables aléatoires (en théorie des probabilités) se prive non seulement d'élargir son horizon, mais aussi de nourrir son intuition proprement mathématique." Tout en gardant un caractère élémentaire, le livre aborde, présentés de façon concise, des thèmes qu'on trouve rarement à ce niveau : langage des catégories, algèbres de Clifford, métrique kählérienne, produits tensoriels en mécanique quantique, etc. Il s'agit à la fois d'un ouvrage d'initiation à l'algèbre linéaire destiné aux étudiants en mathématiques (de licence ou des classes préparatoires) et d'un ouvrage de référence qui intéressera tant les étudiants en physique que les agrégatifs et les enseignants de mathématiques.
ANALYSE FONCTIONNELLE - THEORIE ET APPLICATIONSCet ouvrage de niveau Master 1 est la référence en matière d'analyse fonctionnelle. Il en détaille la théorie de façon exhaustive, et en décrit les principales applications. La 1re édition de ce livre paru en 1994 sous marque Masson dans la prestigieuse collection «Mathématiques Appliquées pour la Maîtrise».1,710/mainssl/modules/MySpace/PrdInfo.php?sn=llp&pc=2407001957007
ALGEBRE, TOME 4 - CORPS ENSEMBLES ET CARDINAUXtroisième tome à paraître d'un ouvrage populaire Ouvrage encyclopédique, rédigé par 13 auteurs est toujours très demandé par les étudiants en mathématiques. Sans équivalent, même en anglais, il couvre toutes les connaissances en algèbre qu’on peut attendre d’un étudiant passant l’agrégation. Il comporte un grand nombre d’exercices, tous corrigés.1,100/mainssl/modules/MySpace/PrdInfo.php?sn=llp&pc=2407001956998
LE THEOREME DU PARAPLUIE - OU L'ART D'OBSERVER LE MONDE DANS LE BON SENSSavez-vous que certains fleuves coulent de bas en haut ? Que la Lune tourne en ligne droite ? Qu'en lisant ces quelques lignes vous voyagez à la vitesse de 300000 kilomètres par seconde ?Ces affirmations peuvent vous sembler absurdes, et pourtant elles sont vraies ! Notre perception du monde est parfois trompeuse. Il ne s'agit pas toujours d'être plus intelligent pour répondre aux grandes questions : il faut avant tout être astucieux. Un simple changement de point de vue suffit souvent à éclairer les phénomènes les plus complexes.Les mathématiques nous offrent un outil puissant pour comprendre les rouages de l'Univers. Elles nous apprennent à penser plus large pour comprendre plus loin. C'est ce que nous montre ici Mickaël Launay, dans un voyage passionnant qui commence dans les allées des supermarchés et s'achève dans les profondeurs vertigineuses des trous noirs.Ah, et il reste une dernière question : quel est le rapport entre tout cela et un parapluie ?490/mainssl/modules/MySpace/PrdInfo.php?sn=llp&pc=2407001954463
LES DEMONSTRATIONS MATHEMATIQUES - COURS COMPLET AVEC 127 EXERCICES RESOLUSCe livre présente le langage utilisé par les mathématiciens en commençant par la construction et la sémantique des énoncés. Les règles de raisonnement à la base de toutes les démonstrations sont ensuite exposées en détail. Nous détaillons également les éléments de français qui permettent d'exprimer les preuves mathématiques par des textes concis, variés et intelligibles. La seconde moitié de l'ouvrage insiste sur les difficultés de raisonnement et de langage exclusivement à travers d'exemples. La plupart sont tirés du programme du lycée et de première année universitaire ; d'autres, ludiques et moins conventionnels, ne nécessitent pas de connaissance supplémentaire. Les nombreux exercices ne testent pas uniquement les compétences mathématiques mais surtout la compréhension des principes de démonstration. à notre connaissance, ce style d'exercice n'existe dans aucun autre ouvrage. Les corrections proposées ne contiennent pas simplement une démonstration possible mais sont souvent accompagnées de commentaires sur le raisonnement sous-jacent. Ce livre ne traite pas de logique formelle mais se veut une référence pour un cours de mathématiques sur le raisonnement tel qu'il est pratiqué. L'enseignant y trouvera des exemples et des explications qu'il pourra facilement réutiliser. L'étudiant qui aura assimilé les principes présentés sera mieux armé pour s'attaquer à la compréhension de notions mathématiques plus complexes.1,930/mainssl/modules/MySpace/PrdInfo.php?sn=llp&pc=2405001934932